Perioperative Cardiac Risk Assessment and Management for Patients Who Undergo Noncardiac Surgery

Emmanuelle Duceppe, MD,a,b,c Joel Parlow, MD, MSc (Co-chair),d Paul MacDonald, MD,e Kristin Lyons, MDCM,f Michael McMullen, MD,d Sadeesh Srinathan, MD, MSc,g Michelle Graham, MD,h Vikas Tandon, MD,i Kim Styles, MD,j Amal Bessisow, MD, MSc,k Daniel I. Sessler, MD,l Gregory Bryson, MD, MSc,m,n and P.J. Devereaux, MD, PhD (Co-chair)b,c,i

ABSTRACT
The Canadian Cardiovascular Society Guidelines Committee and key Canadian opinion leaders believed there was a need for up to date guidelines that used the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system of evidence assessment for patients who undergo noncardiac surgery. Strong recommendations included: 1) measuring brain natriuretic peptide (BNP) or N-terminal fragment of proBNP (NT-proBNP) before surgery to enhance perioperative cardiac risk estimation in patients who are 65 years of age or older, are 45-64 years of age with significant cardiovascular disease, or have a Revised Cardiac Risk Index score ≥ 1; 2) against performing preoperative resting echocardiography, coronary computed tomography angiography, exercise or cardiopulmonary exercise testing, or pharmacological stress echocardiography or radionuclide imaging to enhance perioperative cardiac risk estimation; 3) against the initiation or continuation of acetylsalicylic acid for the prevention of perioperative cardiac events, except in patients with a recent coronary artery stent or who undergo carotid endarterectomy; 4) against the use of protein C and protein S concentrates for patients with severe vitamin K deficiency or a recent stroke or transient ischemic attack; 5) against the use of low dose aspirin for primary prevention of cardiovascular events; 6) against the use of perioperative beta-blockers for patients undergoing noncardiac surgery; 7) against the use of prophylactic anticoagulation for patients undergoing noncardiac surgery; and 8) against the routine use of invasive hemodynamic monitoring during noncardiac surgery.

RÉSUMÉ
Le comité des lignes directrices de la Société canadienne de cardiologie et les principaux leaders d’opinion canadiens ont estimé qu’il y avait un besoin pour des lignes directrices à jour utilisant le système d’évaluation des données probantes GRADE (Grading of Recommendations Assessment, Development, and Evaluation) pour l’évaluation des patients qui subissent une intervention chirurgicale non cardiaque. Les principales recommandations sont les suivantes : 1) la mesure des peptides natriurétiques de type B (BNP) ou le fragment N-terminal du propeptide natriurétique de type B (NT-proBNP) avant l’intervention chirurgicale pour améliorer l’estimation du risque cardio vasculaire peropéra toire chez les patients qui ont 65 ans ou plus, ou qui sont âgés de 45 à 64 ans et qui ont une maladie cardiovasculaire importante, ou qui ont un score RCRI (Revised Cardiac Risk Index) ≥ 1 ; 2) contre la réalisation de l’échocardiographie de repos préopéra toire, de l’angiographie coronarienne par tomodensitométrie, de l’épreuve à l’effort ou de l’épreuve d’effort cardiorespiratoire, ou de l’échocardiographie de stress pharmacologique ou de l’imagerie isotopique pour améliorer l’estimation...
cardiac events, and management of perioperative cardiac complications. Identified topics and working groups, searched the literature, developed the summary of findings and GRADE quality assessment tables, voted on the recommendations, and wrote the guidelines. The secondary panel reviewed the guidelines manuscript and made suggested edits and comments, which the primary panel addressed. Next the guidelines were sent to the CCS Guidelines Committee; they also provided suggested edits and comments that the primary panel addressed before finally submitting the guidelines to the CCS Council.

Because of uncertainty regarding the reliability of data that were published by Dr. Don Poldermans,® the committee decided to exclude studies for which he was the first or senior author. If a study by Dr. Poldermans was included in a meta-analysis, the panel only included the meta-analysis in a summary of findings table if his study had results that were consistent with the results from the other studies.

During an in-person meeting and several conference calls, the primary panel reviewed the summary of findings and GRADE quality assessment tables for each topic. Before discussing any topic all panel members had to declare if they had any financial or intellectual conflicts of interest. If a panel member had a conflict of interest, they were allowed to participate in the discussion but were not allowed to vote on the recommendation. Supplemental Table S1 shows details of all declared conflicts of interest and individual voting results.

The panel used the GRADE recommendation rating system, and recommendations were graded as a strong or conditional recommendation on the basis of high, moderate, low, or very low quality of evidence.® Supplemental Table S2 shows, for each GRADE recommendation, the corresponding balance of benefits vs the risks and burdens, the methodological quality of the supporting evidence, and the implications.®

Each recommendation required at least two-thirds of the nonconflicted primary panel members to agree during a vote on a GRADE of recommendation rating. If this was not achieved, the primary panel re-evaluated the evidence and another vote
Preoperative Cardiac Risk Assessment

Accurate preoperative cardiac risk estimation can serve several functions. Valid estimates of the risks and benefits of surgery can facilitate informed decision-making about the appropriateness of surgery. Accurate cardiac risk estimation can also guide management decisions (eg, consideration of endovascular vs open surgical approach) and inform decisions around monitoring (eg, troponin measurements) after surgery.

Which Patients Should Undergo Cardiac Risk Assessment Before Noncardiac Surgery?

Our recommendations only pertain to patients (1) 45 years of age and older or (2) patients 18-44 years of age with known significant cardiovascular disease (ie, coronary artery disease, cerebral vascular disease, peripheral arterial disease, congestive heart failure, severe pulmonary hypertension, or a severe obstructive intracardiac abnormality, such as aortic stenosis, mitral stenosis, hypertrophic obstructive cardiomyopathy), because these patients have, or are at risk of having, an underlying cardiac substrate that puts them at risk of a perioperative cardiac complication. Moreover, our recommendations apply to noncardiac surgeries that require at least an overnight stay in the hospital after surgery, because of the availability of evidence and these surgeries are most likely to produce sufficient cardiac stressors to put these patients at risk of a cardiac complication.

Figure 1 provides an overview of our approach to preoperative cardiac risk assessment and perioperative cardiac monitoring. We divided surgeries into 3 categories on the basis of urgency and the likelihood of producing sufficient perioperative cardiac stressors to put the patient at risk of a perioperative cardiac complication. Patients age ≥45 years or 18-44 years with known significant cardiovascular disease* undergoing noncardiac surgery requiring overnight hospital admission were divided into 3 categories: emergency surgery, urgent/semiurgent surgery, and elective surgery.

Emergency surgery: Proceed to surgery if patient does not have a significant cardiovascular disease and no other medical condition requiring treatment. If a patient’s age ≥65 years, RCRI ≥1, or age 45-64 years with significant cardiovascular disease, then obtain an echocardiogram before surgery to inform the anesthesiologist, surgeon, and medical team of the type and degree of disease. If the history suggests the patient has an unstable cardiac condition or severe PHTN, then obtain an echocardiogram before surgery to inform the anesthesiologist, surgeon, and medical team of the type and degree of disease.

Urgent/semiurgent surgery: Proceed to surgery; only undertake preoperative cardiac assessment if unstable cardiac condition or suspected undiagnosed severe PHTN or obstructive cardiomyopathy. If a patient’s age ≥65 years, RCRI ≥1, or age 45-64 years with significant cardiovascular disease, then order NT-proBNP/BNP.

Elective surgery: Assess postoperative cardiac risk. Risk stratification with RCRI*: If a patient’s age ≥65 years, RCRI ≥1, or age 45-64 years with significant cardiovascular disease, then obtain a troponin daily x 48-72 hrs. Consider in-hospital shared-care management. If a patient’s age ≥65 years, RCRI ≥1, or age 45-64 years with significant cardiovascular disease, then order NT-proBNP/BNP.
basis of the timing of surgery (ie, emergency, urgent/semi-urgent, and elective), and these categories influenced our recommendations regarding preoperative cardiac risk assessment.

Regarding whether physicians should undertake a preoperative cardiac risk assessment, our recommendations represent good practice statements. We believe that providing patients with the opportunity to engage in shared decision-making for major health care decisions—including the decision about undergoing elective surgery—irrespective of its effect on other patient-important outcomes, is of value in itself. Providing an accurate risk assessment is a prerequisite for shared decision-making in the perioperative setting. Among patients who undergo elective surgery, patients who are 45 years of age or older or 18-44 years of age with known significant cardiovascular disease have the most to gain from preoperative cardiac risk evaluation—in other elective surgery patients the risk assessment will result in a sufficiently low risk that it is very unlikely to influence decisions regarding surgery.

If a patient requires emergency surgery (ie, an acute life- or limb-threatening condition), we believe the vast majority of patients’ values and preferences will favour the benefits of surgery over the risks; therefore, surgery should not be delayed unnecessarily. We believe most patients’ values and preferences will favour the benefits of urgent surgery (eg, surgery for an acute bowel obstruction or hip fracture) or semiurgent surgery (ie, surgery for a cancer that has the potential to metastasize) over the risks, unless there is an unstable cardiovascular condition (eg, unstable angina, acute stroke), severe obstructive intracardiac abnormality, or severe pulmonary hypertension. If this is the case, this information might influence the decision around delaying, cancelling, or proceeding with surgery, and the choice of the surgical and anaesthetic techniques.

GOOD PRACTICE STATEMENT

1. In patients who require emergency surgery, we recommend delaying surgery for a preoperative cardiac risk assessment.
2. In patients who require urgent or semiurgent surgery, we recommend undertaking preoperative cardiac risk assessment only if the patients’ history or physical examination suggests there is a potential undiagnosed severe obstructive intracardiac abnormality, severe pulmonary hypertension, or an unstable cardiovascular condition.
3. In patients who undergo elective noncardiac surgery who are 45 years of age or older or 18-44 years of age with known significant cardiovascular disease, we recommend they undergo preoperative cardiac risk assessment.

Practical tip. Preoperative cardiac risk assessments should be undertaken by a physician or surgeon with substantial knowledge in this area (eg, a thorough understanding of these perioperative guidelines) and who is proficient in cardiac clinical evaluation.

Risk communication

There is an ethical requirement to accurately apprise patients about the benefits and risks of surgery.

GOOD PRACTICE STATEMENT

4. We recommend communicating to patients their perioperative cardiac risk.

RECOMMENDATION

5. We recommend explicit communication of perioperative cardiac risk on the basis of the expected event rate among 100 patients or the range of risk consistent with the 95% confidence interval (CI) of the risk estimate (Strong Recommendation; Moderate-Quality Evidence).

Practical tip. An example of communicating perioperative cardiac risk quantitatively follows. “Ms Smith, if we had 100 patients with the same underlying conditions that you have who were to undergo the same type of surgery as you, we would expect 8 to 12 of these patients to suffer a heart attack, cardiac arrest, or die within the first 30 days after surgery. This also means we would expect 88 to 92 of these patients to go through surgery without one of these complications.”

Methods of preoperative cardiac risk assessment

Researchers have evaluated 3 methods of estimating perioperative cardiac risk (ie, clinical risk indices, cardiac biomarkers, and noninvasive cardiac testing) that can provide the required data for risk communication in addition to routine clinical evaluation.

Clinical risk indices

Supplemental Tables S5 and S6 show the summary of findings and GRADE quality assessment for 3 clinical risk
High-risk surgery

plasty meet criteria if they have such
ological Q waves; patients with previous coronary bypass surgery or angio-
current complaint of ischemic chest pain or nitrate use, or ECG with path-
ECG, electrocardiogram.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of ischemic heart disease*</td>
<td>1</td>
</tr>
<tr>
<td>History of congestive heart failure*</td>
<td>1</td>
</tr>
<tr>
<td>History of cerebrovascular disease*</td>
<td>1</td>
</tr>
<tr>
<td>Use of insulin therapy for diabetes</td>
<td>1</td>
</tr>
<tr>
<td>Preoperative serum creatinine > 177 μmol/L (> 2.0 mg/dL)</td>
<td>1</td>
</tr>
<tr>
<td>High-risk surgery</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1. Computation of Revised Cardiac Risk Index score

<table>
<thead>
<tr>
<th>Variable</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of ischemic heart disease*</td>
<td>1</td>
</tr>
<tr>
<td>History of congestive heart failure*</td>
<td>1</td>
</tr>
<tr>
<td>History of cerebrovascular disease*</td>
<td>1</td>
</tr>
<tr>
<td>Use of insulin therapy for diabetes</td>
<td>1</td>
</tr>
<tr>
<td>Preoperative serum creatinine > 177 μmol/L (> 2.0 mg/dL)</td>
<td>1</td>
</tr>
<tr>
<td>High-risk surgery</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2. Total RCRI score and corresponding risk of myocardial infarction, cardiac arrest, or death at 30 days after noncardiac surgery*

<table>
<thead>
<tr>
<th>Total RCRI points</th>
<th>Risk estimate, %</th>
<th>95% CI for the risk estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.9</td>
<td>2.8%-5.4%</td>
</tr>
<tr>
<td>1</td>
<td>6.0</td>
<td>4.9%-7.4%</td>
</tr>
<tr>
<td>2</td>
<td>10.1</td>
<td>8.1%-12.6%</td>
</tr>
<tr>
<td>≥3</td>
<td>15.0</td>
<td>11.1%-20.0%</td>
</tr>
</tbody>
</table>

CI, confidence interval; RCRI, Revised Cardiac Risk Index.

* On the basis of high-quality external validation studies.

Table 2 and Supplemental Table S7 show the pooled risk estimates of external validation studies of the RCRI that were published in the past 15 years, systematically monitored perioperative troponin measurements, and reported event rates for the various RCRI scores. The results showed risk estimates for myocardial infarction, cardiac arrest, or death of 3.9% (95% CI, 2.8%-5.4%) for an RCRI score of 0, 6.0% (95% CI, 4.9%-7.4%) for an RCRI score of 1, 10.1% (95% CI, 8.1%-12.6%) for an RCRI score of 2, and 15.0% (95% CI, 11.1%-20.0%) for an RCRI score ≥ 3. These values are higher than the risk estimates on the basis of the original data that were used to derive the RCRI. The likely explanation for these differences is that the original RCRI study monitored creatine kinase muscle and brain isoenzyme and excluded emergency surgery patients, whereas the external validation studies monitored troponin measurements that are much more sensitive than creatine kinase muscle and brain isoenzyme, and some studies included emergency surgery patients.

The NSQIP Myocardial Infarction and Cardiac Arrest (MICA) risk index and the American College of Surgeons (ACS) NSQIP risk index have both been developed using large data sets. In these studies, these risk indices showed superior discrimination compared with the RCRI; however, it is highly probable that the NSQIP MICA and the ACS NSQIP risk indices underestimated cardiac risk, because patients did not undergo systematic measurements of perioperative troponin levels in these studies. Without cardiac biomarker screening more than half of all perioperative myocardial infarctions go undetected. This likely explains the low number of perioperative myocardial infarctions in these studies that developed the NSQIP MICA and the ACS NSQIP risk indices. Moreover, the NSQIP MICA and the ACS NSQIP risk indices have not undergone external validation in a study that has systematically monitored troponin measurements after noncardiac surgery. For these reasons the panel favoured the RCRI for cardiac risk prediction.

RECOMMENDATION

6. When evaluating cardiac risk, we suggest clinicians use the RCRI over the other available clinical risk prediction scores (Conditional Recommendation; Low-Quality Evidence).

Self-reported functional capacity

Some groups have recommended assessing patients’ self-reported functional capacity to determine their metabolic equivalents (METs), to guide perioperative cardiac risk assessment. There are, however, limited data to inform this issue.

In 1999, Reilly et al. evaluated 600 consecutive patients who underwent major noncardiac surgery and showed that after adjustment for age, patient self-reported functional capacity (METs) did not predict perioperative cardiovascular complications (adjusted odds ratio [aOR], 1.81; 95% CI, 0.94-3.46). Similarly, Wiklund et al. determined METs in 5939 patients who underwent noncardiac surgery and showed after adjustment for age that patients’ METs were not independently predictive of major perioperative cardiac complications. Moreover, the data raised concerns about observer bias in the estimation of patients’ METs.

Because of the limitations of the evidence, the primary panel unanimously decided not to make a recommendation on how to use patient self-reported functional capacity to estimate perioperative cardiac risk. A large prospective cohort study (scheduled to report in 2017) that is evaluating the prognostic capabilities of a physicians’ assessment of patients’ METs vs other measures (eg, cardiopulmonary testing) will...
Table 3. Risk of death or myocardial infarction at 30 days after noncardiac surgery, based upon a patient’s preoperative NT-proBNP or BNP result

<table>
<thead>
<tr>
<th>Test result</th>
<th>Risk estimate</th>
<th>95% CI for the risk estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT-proBNP < 300 ng/L or BNP < 92 mg/L</td>
<td>4.9</td>
<td>3.9%-6.1%</td>
</tr>
<tr>
<td>NT-proBNP value ≥ 300 ng/L or BNP ≥ 92 mg/L</td>
<td>21.8</td>
<td>19.0%-24.8%</td>
</tr>
</tbody>
</table>

BNP, brain natriuretic peptide; CI, confidence interval; NT-proBNP, N-terminal pro-brain natriuretic peptide.

provide more insight into the value of estimating a patients’ METs.31

Cardiac biomarkers

Brain natriuretic peptides (BNPs) and N-terminal fragment of proBNP (NT-proBNP) are released from the myocardium in response to various stimuli such as myocardial stretch and ischemia.32-34 Several prospective observational studies have evaluated the prognostic capabilities of NT-proBNP and BNP to predict major cardiovascular events after noncardiac surgery. Supplemental Tables S8 and S9 show the summary of findings and GRADE quality assessment for the prognostic capabilities of NT-proBNP and BNP, respectively.

An individual patient data meta-analysis included 2179 patients from 18 studies and showed that a preoperative NT-proBNP/BNP measurement was independently associated with the primary outcome (ie, death or nonfatal myocardial infarction) at 30 days after noncardiac surgery (aOR, 3.40; 95% CI, 2.57-4.47; P < 0.001).35 Importantly, a preoperative NT-proBNP/BNP measurement before noncardiac surgery improved risk prediction among patients who did and did not suffer the primary outcome. Values ≥ 300 ng/L for NT-proBNP and ≥ 92 mg/L for BNP were identified as significant thresholds associated with an increased risk of the primary outcome. According to these thresholds, 7.6% of patients had an elevated NT-proBNP/BNP measurement before noncardiac surgery. Death or nonfatal myocardial infarction within 30 days after surgery occurred in 4.9% of patients with preoperative NT-proBNP/BNP values below these thresholds compared with 21.8% of patients with NT-proBNP/BNP values at or above these thresholds (Table 3). These findings were consistent with results from previous meta-analyses.35-39

RECOMMENDATION

7. We recommend measuring NT-proBNP or BNP before noncardiac surgery to enhance perioperative cardiac risk estimation in patients who are 65 years of age or older, are 45-64 years of age with significant cardiovascular disease, or have an RCRI score ≥ 1 (Strong Recommendation; Moderate-Quality Evidence). Values and preferences. Cost and accessibility were considered important determinants of biomarker selection. Considering cost, we restricted testing to patient groups that had a baseline clinical risk estimate > 5%. Data from the Vascular Events in Noncardiac Surgery Patients Cohort Evaluation (VISION) Study showed that patients 65 years of age or older or 45-64 years of age with known cardiovascular disease have a baseline risk > 5% for cardiovascular death or nonfatal myocardial infarction at 30 days after surgery, whereas patients without these characteristics have a ≤ 2.0% 30-day event rate.2 Compared with cardiac imaging and noninvasive cardiac stress testing, NT-proBNP/BNP biomarkers are inexpensive and avoid the need for return visits.

Practical tip. Hospitals that do not analyze NT-proBNP/BNP in their core laboratory can obtain an instrument to allow clinicians to obtain NT-proBNP as a point of care test in the preoperative setting, offering biomarker information within minutes.

Resting echocardiography

Supplemental Tables S10 and S11 show the summary of findings and GRADE quality assessment for the prognostic capabilities of preoperative resting echocardiography, respectively. Two small studies of 339 and 570 patients suggested that a low ejection fraction was a borderline independent predictor of major cardiovascular complications within 30 days after noncardiac surgery.40,41 The largest study (N = 1923) to assess the prognostic capabilities of preoperative echocardiographic parameters suggested that several parameters (eg, left ventricular ejection fraction < 50%) were independent predictors of major perioperative cardiovascular complications; however, a preoperative NT-proBNP measurement was a much stronger independent predictor.12 The prognostic capabilities of an RCRI threshold ≥ 2 increased with the addition of an NT-proBNP threshold of ≥ 301 ng/L (ie, an RR of 1.4; 95% CI, 1.0-1.8 went to an RR of 3.7; 95% CI, 2.7-5.0; P < 0.001); however, use of echocardiographic parameters in addition did not result in a further increase in the RR.

Because of these data and our recommendation to measure a preoperative NT-proBNP or BNP in patients who undergo noncardiac surgery who are 65 years of age or older, or 45-64 years of age with known cardiovascular disease, the current evidence does not support the use of routine preoperative echocardiography for risk assessment in patients who undergo noncardiac surgery.

RECOMMENDATION

8. We recommend against performing preoperative resting echocardiography to enhance perioperative cardiac risk estimation (Strong Recommendation; Low-Quality Evidence).

Practical tip. Although we recommend against routinely obtaining echocardiography before noncardiac surgery to enhance perioperative cardiac risk estimation, if a patient requires urgent/semiurgent or elective surgery and their clinical examination suggests the patient has an undiagnosed severe obstructive intracardiac abnormality (eg, aortic stenosis, mitral
Coronary computed tomographic angiography

Supplemental Tables S12 and S13 show the summary of findings and GRADE quality assessment for preoperative coronary computed tomographic angiography (CCTA), respectively. Of the preoperative CCTA studies the VISION CCTA study was the highest-quality study.22 This was a prospective cohort study conducted at 12 centres in 8 countries that evaluated the prognostic capabilities of preoperative CCTA to enhance perioperative risk prediction beyond clinical data in 955 patients. The CCTA results were blinded unless significant left main disease was identified, and patients had daily troponin measurements for 3 days after surgery.22 The primary outcome of cardiovascular death and nonfatal myocardial infarction occurred in 74 patients (7.7%) within 30 days of surgery.

The study showed, compared with the RCRI alone, that preoperative CCTA findings improved risk estimation (ie, extensive obstructive disease had an adjusted hazard ratio [aHR], 3.76; 95% CI, 1.12-12.62) among patients who suffered the primary outcome, but also overestimated risk among patients who did not suffer the primary outcome. Although CCTA findings can appropriately improve risk estimation among patients who will suffer the primary outcome, CCTA findings are more than 5 times as likely to lead to an inappropriate overestimation of risk among patients who will not suffer a perioperative cardiovascular death or myocardial infarction. The overall absolute net reclassification in a sample of 1000 patients is that CCTA will result in an inappropriate estimate of risk in 81 patients (on the basis of risk categories of < 5%, 5%-15%, and > 15% for the primary outcome).22

Overestimating risk can have negative consequences. For example, many patients who have a positive preoperative cardiac stress test have their surgery delayed while they are sent for coronary angiography with a plan for coronary revascularization, which might provide no benefit.45-48 Overestimating cardiac risk might also result in delays and cancellations of beneficial surgery or inappropriate use of postoperative high-intensity beds, precluding access for patients at greater risk.

RECOMMENDATION

9. We recommend against performing preoperative CCTA to enhance perioperative cardiac risk estimation (Strong Recommendation; Moderate-Quality Evidence).

Exercise stress testing and cardiopulmonary exercise testing

Supplemental Tables S14 and S15 show the summary of findings and GRADE quality assessment for preoperative exercise stress testing, respectively. Only a few studies have addressed the preoperative value of exercise stress testing to enhance risk prediction of postoperative cardiovascular complications, and the overall number of patients and events were small.45-48 Results did not show an association between electrocardiogram (ECG) changes during exercise and postoperative outcome.46-48 Two studies showed that low performance capacity was associated with a higher incidence of postoperative cardiovascular events, but neither study performed a risk-adjusted analysis.47-48

Supplemental Tables S16 and S17 show the summary of findings and GRADE quality assessment for preoperative cardiopulmonary exercise testing (CPET), respectively. Few studies have assessed the prognostic capabilities of CPET to independently predict 30-day cardiac outcomes. The largest prospective cohort study included 1725 patients who underwent elective major abdominal or thoracic surgery and showed CPET was a weak independent predictor of long-term postoperative mortality.48-51 Other studies showed similar results,50-53 with various strength of the association between CPET and mortality, but none determined if CPET performance allowed for improved risk reclassification in addition to clinical evaluation. The value of preoperative exercise testing or CPET to enhance perioperative cardiac risk reclassification in addition to clinical evaluation alone remains unclear, is inconvenient for patients, and costs significantly more than NT-proBNP or BNP measurement.

RECOMMENDATION

10. We recommend against performing preoperative exercise stress testing to enhance perioperative cardiac risk estimation (Strong Recommendation; Low-Quality Evidence).

11. We recommend against performing preoperative CPET to enhance perioperative cardiac risk estimation (Strong Recommendation; Low-Quality Evidence).

Pharmacological stress echocardiography and radionuclide imaging

Supplemental Tables S18 and S19 show the summary of findings and GRADE quality assessment for pharmacological stress echocardiography and radionuclide imaging, respectively. Several observational studies have evaluated the predictive value of pharmacological stress echocardiography and radionuclide imaging in patients who undergo noncardiac surgery.43 All studies had relatively small sample sizes with a limited number of events. Only a few were prospective studies, and few reported risk-adjusted associations. No study
In PEP, ASA was associated with an (HR, 0.64; 95% CI, 0.50-0.81) in patients who undergo hip fracture surgery. The timeline to de-escalation was 7-10 days for drug-eluting stent, depending on the type of stent but usually refers to 6 weeks for bare-metal stent and between 3 and 12 months for drug-eluting stent, depending on the stent.

Table 4. Management of interventions targeting the prevention of perioperative cardiac events*

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA</td>
<td>Withhold at least 3 days before surgery and restart ASA when the risk of bleeding related to surgery has passed (ie, 8-10 days after major noncardiac surgery)</td>
</tr>
<tr>
<td>β-Blocker</td>
<td>Continue the β-blocker during the perioperative period; however, if a patient's systolic blood pressure is low before surgery, physicians should consider decreasing or holding the dose of the β-blocker before surgery</td>
</tr>
<tr>
<td>ACEI/ARB</td>
<td>Withhold ACEI/ARB 24 hours before noncardiac surgery and restart ACEI/ARB on day 2 after surgery, if the patient is hemodynamically stable</td>
</tr>
<tr>
<td>Statin</td>
<td>Continue the statin during the perioperative period</td>
</tr>
<tr>
<td>Smoking</td>
<td>Discuss and facilitate smoking cessation (eg, nicotine replacement therapy), ideally starting ≥ 4 weeks before surgery</td>
</tr>
<tr>
<td>Initiation of new medications and coronary revascularization before noncardiac surgery</td>
<td></td>
</tr>
<tr>
<td>ASA</td>
<td>Do not initiate ASA for the prevention of perioperative cardiac events</td>
</tr>
<tr>
<td>β-Blocker</td>
<td>Do not initiate a β-blocker within 24 hours before noncardiac surgery</td>
</tr>
<tr>
<td>α2-Agonist</td>
<td>Do not initiate an α2-agonist for the prevention of perioperative cardiovascular events</td>
</tr>
<tr>
<td>Calcium channel blocker</td>
<td>Do not initiate a calcium channel blocker for the prevention of perioperative cardiovascular events</td>
</tr>
<tr>
<td>Coronary revascularization</td>
<td>Do not undertake preoperative prophylactic coronary revascularization for patients with stable coronary artery disease</td>
</tr>
</tbody>
</table>

ACEI/ARB, angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker; ASA, acetylsalicylic acid.

* This applies to patients age 45 years of age or older or 18-44 years of age with known significant cardiovascular disease (ie, history of coronary artery disease, cerebral vascular disease, peripheral vascular disease, congestive heart failure, or a severe obstructive intracardiac abnormality [eg, severe aortic stenosis, severe mitral stenosis, or severe hypertrophic obstructive cardiomyopathy]) undergoing noncardiac surgery requiring hospital admission.

Values and preferences. The panel believed that the cost and potential delays associated with these stress tests should be taken into account because of the absence of evidence of an overall absolute net improvement in risk reclassification.

Perioperative Cardiac Risk Modification

Table 4 shows the recommended management of interventions that target perioperative cardiac risk.

Perioperative use of acetylsalicylic acid

Supplemental Tables S20 and S21 show the summary of findings and GRADE quality assessment for perioperative initiation and continuation of acetylsalicylic acid (ASA), respectively. The Pulmonary Embolism Prevention (PEP) trial showed that ASA prevents venous thromboembolism (HR, 0.64; 95% CI, 0.50-0.81) in patients who undergo hip fracture surgery. In PEP, ASA was associated with an increased risk of myocardial infarction (HR, 1.33; 95% CI, 1.00-1.78); however, there was no systematic monitoring of cardiac biomarkers after surgery, and there were only 184 myocardial infarctions.

The **Perioperative Ischemic Evaluation-2 (POISE-2)** trial was a large RCT of 10,010 patients who underwent a wide spectrum of in-hospital noncardiac surgeries. Patients who underwent a carotid endarterectomy, had received a bare-metal stent in the 6 weeks before surgery, or had received a drug-eluting stent in the 12 months before surgery were excluded from the trial. Patients had systematic monitoring of cardiac biomarkers or enzymes for the first 3 days after surgery. POISE-2 showed no effect of ASA on myocardial infarction and cardiac or all-cause mortality. POISE-2, similar to PEP, showed perioperative ASA increased the risk of major bleeding. POISE-2 included 5628 patients who were not previously taking ASA and 4382 patients who were taking ASA chronically but had stopped taking it a minimum of 3 days (median of 7 days) before surgery. The results were consistent in these 2 groups of patients. In POISE-2 the risk of bleeding related to surgery had passed 8-10 days after surgery.

Values and preferences. The panel believed that the cost and potential delays associated with these stress tests should be taken into account because of the absence of evidence of an overall absolute net improvement in risk reclassification.

RECOMMENDATION

12. We recommend against performing preoperative pharmacological stress echocardiography to enhance perioperative cardiac risk estimation (Strong Recommendation; Low-Quality Evidence).

13. We recommend against performing preoperative pharmacological stress radionuclide imaging to enhance perioperative cardiac risk estimation (Strong Recommendation; Moderate-Quality Evidence).

Perioperative Cardiac Risk Modification

Table 4 shows the recommended management of interventions that target perioperative cardiac risk.

Perioperative use of acetylsalicylic acid

Supplemental Tables S20 and S21 show the summary of findings and GRADE quality assessment for perioperative initiation and continuation of acetylsalicylic acid (ASA), respectively. The Pulmonary Embolism Prevention (PEP) trial showed that ASA prevents venous thromboembolism (HR, 0.64; 95% CI, 0.50-0.81) in patients who undergo hip fracture surgery. In PEP, ASA was associated with an increased risk of myocardial infarction (HR, 1.33; 95% CI, 1.00-1.78); however, there was no systematic monitoring of cardiac biomarkers after surgery, and there were only 184 myocardial infarctions.

The **Perioperative Ischemic Evaluation-2 (POISE-2)** trial was a large RCT of 10,010 patients who underwent a wide spectrum of in-hospital noncardiac surgeries. Patients who underwent a carotid endarterectomy, had received a bare-metal stent in the 6 weeks before surgery, or had received a drug-eluting stent in the 12 months before surgery were excluded from the trial. Patients had systematic monitoring of cardiac biomarkers or enzymes for the first 3 days after surgery. POISE-2 showed no effect of ASA on myocardial infarction and cardiac or all-cause mortality. POISE-2, similar to PEP, showed perioperative ASA increased the risk of major bleeding. POISE-2 included 5628 patients who were not previously taking ASA and 4382 patients who were taking ASA chronically but had stopped taking it a minimum of 3 days (median of 7 days) before surgery. The results were consistent in these 2 groups of patients. In POISE-2 the risk of bleeding related to surgery had passed 8-10 days after surgery.
generations. Physicians should discontinue ASA at least 3 days before noncardiac surgery to reduce the risk of major bleeding.\(^6^5\) In patients with an indication for chronic ASA, it is important to restart ASA when the risk of bleeding related to surgery has passed (ie, 8-10 days after major noncardiac surgery).\(^5^5\) Perioperative ASA continuation might be reasonable for some surgical interventions to prevent local thrombosis (eg, free flap, acute limb ischemia). When a patient suffers a myocardial injury or thrombotic event after surgery in the absence of bleeding, there might be a net value to restarting ASA sooner after surgery than 8-10 days.

β-Blockade initiation before noncardiac surgery

Supplemental Tables S22 and S23 show the summary of findings and GRADE quality assessment for perioperative β-blocker initiation, respectively. A recent meta-analysis that included data from >10,000 patients in 14 trials showed that perioperative β-blockers initiated within 24 hours of noncardiac surgery reduced the risk of nonfatal myocardial infarction but increased the risk of death, nonfatal stroke, hypotension, and bradycardia.\(^5^7\) This meta-analysis included data from the POISE trial, which randomized 8351 patients with, or at risk of, coronary artery disease to receive extended-release metoprolol or placebo starting 2-4 hours before induction of anesthesia and continued for 30 days.\(^5^8\) The meta-analysis showed that the increased risk of death and stroke was qualitatively unchanged without the POISE data.

Some authors have advocated for the initiation and titration of β-blockade starting weeks before surgery\(^5^9\); however, most patients are seen in preoperative clinics within days to weeks before surgery, making β-blocker dose titration challenging. Moreover, whatever β-blocker dose a patient tolerates before surgery does not necessarily inform a safe perioperative dose because hypotension is common after surgery.\(^6^0\) Although some authorities advocate beginning β-blockers more than 24 hours before noncardiac surgery, there are no reliable data to support this practice.

RECOMMENDATION

16. We recommend against β-blocker initiation within 24 hours before noncardiac surgery (Strong Recommendation; High-Quality Evidence).

β-Blocker continuation during the perioperative period

Supplemental Tables S24 and S25 show the summary of findings and GRADE quality assessment for perioperative β-blocker continuation, respectively. No RCT informs the risks and benefits of continuing vs holding perioperative β-blockade during the perioperative period in patients chronically taking a β-blocker. Although there are inconsistent results, one large observational study suggested in risk-adjusted analyses that continuing chronic β-blocker usage decreases perioperative mortality, whereas perioperative withholding of a β-blocker in patients taking a β-blocker chronically increased mortality.\(^6^3\)

Although POISE evaluated the initiation of a β-blocker in the perioperative setting, the POISE data suggest that hypotension was the likely mechanism regarding how β-blockers increase the risk of mortality and stroke in the perioperative setting.\(^6^\)

Calcium channel blocker initiation before noncardiac surgery

Supplemental Tables S28 and S29 show the summary of findings and GRADE quality assessment for perioperative initiation of a calcium channel blocker, respectively. The panel was concerned that these small trials with few events

RECOMMENDATION

18. We recommend against preoperative initiation of an α₂-agonist for the prevention of perioperative cardiovascular events (Strong Recommendation; High-Quality Evidence).
do not provide sufficient confidence to exclude potentially important adverse effects.

RECOMMENDATION

19. We suggest against the initiation of calcium channel blockers for the prevention of perioperative cardiovascular events (Conditional Recommendation; Low-Quality Evidence).

Angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker continuation in the perioperative period

Supplemental Tables S30 and S31 show the summary of findings and GRADE quality assessment for the perioperative withholding of an angiotensin-converting enzyme inhibitor (ACEI) or angiotensin II receptor blocker (ARB), respectively. Three RCTs (total N = 188 patients) have looked at the effect of preoperative continuing vs withholding an ACEI or ARB around the time of noncardiac surgery.64-66 All 3 trials reported a systematic review and meta-analysis of 3 trials (total of 178 patients) that evaluated the cardiovascular effect of initiating a statin in patients who undergo vascular surgery.67 There were very few events and perioperative administration of a statin had no effect on all-cause mortality (17 outcomes), cardiac mortality (2 outcomes), and nonfatal myocardial infarction (12 outcomes).68 Panel members believed that the evidence was too weak to support a recommendation.

Statin continuation in the noncardiac surgery setting

Supplemental Tables S34 and S35 show the summary of findings and GRADE quality assessment for statin continuation in the noncardiac surgery setting, respectively. A single RCT included 550 patients who were admitted for an urgent/emergent surgery and had been taking chronic statin therapy.68 Patients were randomized to receive rosuvastatin 20 mg or placebo 2 hours before surgery. At 30 days 10 patients (3.6%) in the rosuvastatin group and 22 patients (8.0%) in the placebo group suffered a myocardial infarction (P = 0.03).

RECOMMENDATION

21. We recommend continuing statin therapy perioperatively in patients who are receiving chronic statin therapy (Strong Recommendation; Moderate-Quality Evidence).

Coronary artery revascularization before noncardiac surgery

Supplemental Tables S36 and S37 show the summary of findings and GRADE quality assessment for coronary artery revascularization before noncardiac surgery, respectively. One trial randomized 216 patients to undergo coronary angiography followed by coronary revascularization, if applicable, followed by carotid endarterectomy, and 210 patients to undergo carotid endarterectomy without undergoing coronary angiography.69 Among the 216 patients assigned to coronary angiography before carotid endarterectomy, 68 (31%) had significant coronary artery disease on angiography. Sixty-six of these patients underwent percutaneous coronary intervention (PCI), and then while still taking ASA and clopidogrel underwent carotid endarterectomy a mean of 4 days later; 2 patients underwent coronary artery bypass grafting surgery and carotid endarterectomy during one anesthetic period.

Although this trial suggests short- and long-term benefits from a strategy of coronary angiography followed by coronary revascularization—when relevant—before carotid endarterectomy, limitations of the trial include few events, unrealistically large treatment effects, and fixed block sizes that might have compromised concealment of randomization.69,70 Moreover, it is difficult to know how to translate these results to the broader population of patients who undergo noncardiac surgery, especially because of the very short timelines from coronary revascularization to noncardiac surgery and that all of the PCI patients underwent noncardiac surgery while receiving dual antiplatelet therapy.

RECOMMENDATION

20. We recommend withholding ACEI/ARB starting 24 hours before noncardiac surgery in patients treated chronically with an ACEI/ARB (Strong Recommendation; Low-Quality Evidence).

Values and preferences. Weight was accorded to the absence of demonstrated benefit and the substantial increase in the risk of intraoperative hypotension associated with perioperative continuation of ACEI/ARB therapy.

Practical tip. Because the risk of hypotension is greatest within 24 hours of surgery, physicians should consider restarting ACEI/ARB on day 2 after surgery in patients receiving chronic ACEI/ARB therapy, if the patient is hemodynamically stable.

Statin initiation before noncardiac surgery

Supplemental Tables S32 and S33 show the summary of findings and GRADE quality assessment for statin initiation before noncardiac surgery, respectively. Sanders et al. reported a systematic review and meta-analysis of 3 trials...
The trial that is more broadly applicable to patients who undergo noncardiac surgery is the Coronary Artery Revascularization Prophylaxis (CARP) trial. This trial randomized 510 patients with known significant coronary artery disease to preoperative coronary revascularization vs no coronary revascularization before vascular surgery. At a median of 2.7 years after randomization, mortality was 22% in the coronary revascularization group and 23% in the no-revascularization group (RR, 0.98; 95% CI, 0.70-1.37; \(P = 0.92 \)). Vascular surgery was undertaken a median of 48 days after coronary artery bypass grafting surgery and 41 days after PCI. The CARP trial excluded patients with left main coronary artery disease.

RECOMMENDATION

22. For patients with stable coronary artery disease who undergo noncardiac surgery, we recommend against preoperative prophylactic coronary revascularization. (Strong Recommendation; Low-Quality Evidence).

Values and preferences

In the absence of clearly demonstrated benefit, the potential for surgical delays, increase in costs, and risk of bleeding with dual antiplatelet therapy supported a strong recommendation against prophylactic preoperative coronary revascularization.

Practical tip. In patients with CCS class III-IV or unstable angina, obtaining coronary revascularization before noncardiac surgery seems prudent; however, an individual risk-benefit assessment is required in patients who require urgent/semiurgent noncardiac surgery. Patients who receive PCI and a coronary stent should ideally have their noncardiac surgery delayed until the risks of stopping dual antiplatelet therapy are outweighed by the risks associated with delaying noncardiac surgery.

Smoking cessation before noncardiac surgery

Supplemental Tables S38 and S39 show the summary of findings and GRADE quality assessment for preoperative smoking cessation interventions, respectively. A meta-analysis of 4 trials that included 653 patients reported no effect of a smoking cessation intervention compared with standard care on major perioperative cardiovascular complications (RR, 0.58; 95% CI, 0.17-1.96); however, there were only 16 events.

A meta-analysis of 9 trials that included 1251 patients showed that preoperative smoking cessation interventions increase smoking cessation at the time of surgery, and the more intensive interventions increased smoking cessation at 12 month follow-up (RR, 2.96; 95% CI, 1.57-5.55). The more intensive interventions started smoking cessation measures 4 weeks before surgery, and the treatments included smoking cessation counselling and nicotine replacement therapy. The studies were at high risk of bias with high heterogeneity; however, because of the importance of smoking cessation on long-term cardiac outcomes, the panel found the perioperative smoking cessation data compelling.

RECOMMENDATION

23. We recommend discussing and facilitating smoking cessation before noncardiac surgery. (Strong Recommendation; Low-Quality Evidence).

Values and preferences. Because even brief counselling on smoking cessation during preoperative evaluation might positively affect smoking cessation, the panel members believe it is important to take advantage of this opportunity to optimize long-term cardiac risk.

Monitoring for Perioperative Cardiac Events

Troponin monitoring

Supplemental Tables S40 and S41 show the summary of findings and GRADE quality assessment for postoperative troponin monitoring, respectively. Most myocardial infarctions occur within 48 hours of noncardiac surgery when patients are receiving analgesic medications that can mask ischemic symptoms. This provides an explanation as to why 65% of patients who suffer a perioperative myocardial infarction do not experience ischemic symptoms, and without perioperative troponin monitoring these myocardial infarctions would go undetected. Asymptomatic myocardial infarctions are associated with an increased risk of 30-day mortality (aOR, 4.00; 95% CI, 2.65-6.06) similar to symptomatic myocardial infarctions (aOR, 4.76; 95% CI, 2.68-8.43). Moreover, asymptomatic perioperative troponin elevation at levels adjudicated as myocardial injuries due to ischemia—that do not fulfill the universal definition of myocardial infarction—are also associated with an increased risk of 30-day mortality (aHR, 3.30; 95% CI, 2.26-4.81).

The largest prospective international cohort study (VISION; \(N = 15,133 \)) showed that the detection of an elevated troponin T level in the postoperative period was the strongest predictor of 30-day mortality. The prognostic importance of an elevated troponin measurement after surgery was supported by a previous meta-analysis of 14 studies that enrolled 3318 patients. The meta-analysis showed that an elevated troponin level was an independent predictor of all-cause mortality (OR, 6.7; 95% CI, 4.1-10.9) at 1 year after surgery.

Myocardial injury after noncardiac surgery (MINS) was defined as a peak fourth-generation troponin T \(\geq 0.03 \) ng/mL believed to be due to myocardial ischemia. MINS was observed in 8% of patients in the VISION study and was associated with a marked increase in 30-day mortality (9.8% vs 1.1%), and had the largest population attributable risk of all the complications after surgery. Most of these MINS patients (84%) remained asymptomatic and were only detected through the routine surveillance of postoperative troponin levels. The strong association between an elevated troponin level detected during routine postoperative
surveillance and 30-day mortality was confirmed in 2 large cohort studies. \(^2,^{26}\) Moreover, a recent analysis suggests that perioperative troponin surveillance is cost-effective.

Because most patients who suffer a postoperative myocardial infarction or MINS are asymptomatic, routine troponin monitoring can detect patients who are at markedly increased risk of death within 30 days of surgery. Although the optimal management of patients with MINS remains an area of ongoing investigation, we believe that these individuals can benefit from intensification of medical management and close monitoring during their postoperative recovery.

RECOMMENDATION

24. We recommend obtaining daily troponin measurements for 48-72 hours after noncardiac surgery in patients with a baseline risk > 5% for cardiovascular death or nonfatal myocardial infarction at 30 days after surgery (ie, patients with an elevated NT-proBNP/BNP measurement before surgery or, if there is no NT-proBNP/BNP measurement before surgery, in those who have an RCRI score ≥ 1, age 45-64 years with significant cardiovascular disease, or age 65 years or older) (Strong Recommendation; Moderate-Quality Evidence).

Postoperative ECG

Supplemental Tables S42 and S43 show the summary of findings and GRADE quality assessment for obtaining a postoperative 12-lead ECG. The association between the occurrence of ischemic changes on a postoperative ECG and elevation of troponin T level was 85%. \(^81\) The largest prospective study to address the prognostic value of a postoperative ECG showed that new ischemic findings were an independent predictor of subsequent major cardiac events (aOR, 2.20; 95% CI, 1.1-3.7; \(P = 0.009\)). \(^80\) The frequent onset of myocardial ischemia during the early postoperative period (< 60 minutes) was also seen in a study using continuous 12-lead ECG recordings after surgery. \(^82\)

Supplemental telemetry

Supplemental Tables S44 and S45 show the summary of findings and GRADE quality assessment for postoperative telemetry, respectively. Studies using telemetry after surgery to detect silent ischemia have generally defined ischemia as \(\geq 1\) mm of horizontal or downsloping ST depression or \(\geq 2\) mm ST-elevation for \(\geq 60\) seconds, \(^78,^{79,82,83}\) with longer durations of ischemia being more predictive of adverse outcomes after surgery. \(^79,^{82,83}\) Investigators have identified ischemia after surgery as a predictor of major cardiac events in patients with, or at high risk of, coronary artery disease \(^2,^{26}\) and in patients who undergo vascular surgery. \(^83\) Because we recommend monitoring troponin in at-risk patients after surgery, the additional benefits of postoperative telemetry monitoring have not been established, and postoperative telemetry is associated with substantial resources and costs, panel members believed that the evidence was too weak to support a recommendation regarding postoperative telemetry monitoring.

Pulmonary artery catheter monitoring

Supplemental Tables S46 and S47 show the summary of findings and GRADE quality assessment for routine pulmonary artery catheter monitoring (PACM) in patients who undergo noncardiac surgery, respectively. Eight RCTs have evaluated the effect of routine PACM in patients who undergo noncardiac surgery. Trials varied in terms of whether or not hemodynamic targets and directed therapies were mandated.

The largest trial included 1994 patients older than the age of 60 years who underwent a high-risk noncardiac surgery. There was no difference in mortality or morbidity, but there was an increase in pulmonary embolism in patients randomized to PACM. \(^85\) All studies were included in a meta-analysis of PACM use, along with an additional 5 studies (2384 patients) that enrolled intensive care unit patients or those with acute heart failure. Overall, the meta-analysis did not support any association between PACM use and improved outcomes. \(^86\)

RECOMMENDATION

26. We recommend against the use of pulmonary artery catheters in patients who undergo noncardiac surgery (Strong Recommendation; Moderate-Quality Evidence).

Postoperative shared-care management

Supplemental Tables S48 and S49 show the summary of findings and GRADE quality assessment for shared-care management of patients who undergo noncardiac surgery, respectively. Surgeons are commonly busy in operating rooms, which limits their ability to rapidly respond to medical complications on surgical floors. For example, among the 5001 patients given placebo in the POISE-2 trial, the median duration of clinically important hypotension during surgery was 15 minutes, whereas on the first postoperative day it was 150 minutes (\(P < 0.001\)). \(^60\) These data suggest a need for pathways to facilitate more rapid management of cardiovascular compromise on surgical floors.
Shared-care models, between surgeons and medical specialists (eg, anesthesiologist, cardiologist, geriatrician, internist) who are readily available to help with perioperative management of cardiovascular complications, have the potential to improve outcomes. A meta-analysis showed a mortality advantage in patients who had surgery for a hip fracture who were comanaged by surgeons and geriatricians compared with surgeons alone.27

RECOMMENDATION

27. We suggest shared-care management of patients with an elevated NT-proBNP/BNP measurement before surgery or if there is no NT-proBNP/BNP measurement before surgery, in those who have an RCRI score ≥ 1, age 45-64 years with significant cardiovascular disease, or age 65 years or older (Conditional Recommendation; Low-Quality Evidence).

Management of Postoperative Events

ASA and statin in patients who suffer MINS

Supplemental Tables S50 and S51 show the summary of findings and GRADE quality assessment for ASA and statin in patients who suffer MINS. One prospective cohort study and one retrospective case-control study with propensity score-matching have investigated the question of initiation of ASA and statin therapy in patients who had suffered a myocardial injury or myocardial infarction after noncardiac surgery.27,88 In the prospective cohort study, among the 415 patients who suffered a myocardial infarction after noncardiac surgery, patients who had started receiving ASA and statin had a significant reduction in 30-day mortality (aOR, 0.54; 95% CI, 0.29-0.99, and aOR, 0.26; 95% CI, 0.13-0.54, respectively).27

The retrospective case controlled study by Foucrier et al.88 comprised a total of 66 patients who suffered a myocardial injury after major vascular surgery. The primary outcome was the occurrence of a major cardiac event (myocardial infarction, coronary revascularization, or pulmonary edema requiring hospitalization) at 1 year. Cardiovascular medication intensification referred to the introduction of at least 1 of 4 cardiovascular medications (ie, antiplatelet, statin, β-blocker, and ACEI). Patients with no modification of their cardiovascular treatment had an HR of 1.77 (95% CI, 1.13-2.42; \(P = 0.004\)) for the primary outcome compared with a matched control group. In contrast, patients who received intensification of cardiovascular treatment had an HR of 0.63 (95% CI, 0.10-1.19; \(P = 0.45\)) for the primary outcome compared with the matched control group.

RECOMMENDATION

28. We recommend the initiation of long-term ASA in patients who suffer a myocardial injury or myocardial infarction after noncardiac surgery (Strong Recommendation; Moderate-Quality Evidence).

Values and preferences. Although these data are limited to risk-adjusted observational data, the panel believed that the current available data support the use of ASA and a statin in patients who suffer a myocardial injury or myocardial infarction after noncardiac surgery. Panel members also considered the overwhelming evidence of the beneficial effects of ASA and statin after cardiac events in the nonsurgical setting.

Practical tip. Although our recommendations focus on ASA and statin therapy in patients who suffer a myocardial injury or myocardial infarction after noncardiac surgery, these patients should be followed-up by a medical specialist to monitor their status and optimize medications and undertake prognostic tests on the basis of their expert clinical judgement.

Conclusions and Future Research

Throughout the past 2 decades, large clinical trials and prospective observational studies have advanced our understanding of predicting, modifying the risk of, monitoring for, and managing perioperative cardiac complications. Despite these advances, cardiac complications after noncardiac surgery remain a substantial public health problem. There is a need for more large international studies to evaluate promising lines of investigation. Examples include the use of remote, automated, continuous, noninvasive, hemodynamic, and ischemic monitors with alert systems on surgical floors, the prevention or minimization of perioperative bleeding, and management strategies for treating MINS. The evaluation of such lines of investigation holds the potential to substantially improve the safety of noncardiac surgery for the > 200 million adults who annually undergo these procedures.

Funding Sources

Funding to support a face-to-face meeting of the primary panel was supported through a McMaster University Scholar Award received by Dr Devereaux.

References

Supplementary Material
To access the supplementary material accompanying this article, visit the online version of the Canadian Journal of Cardiology at www.onlinecjc.ca and at http://dx.doi.org/10.1016/j.cjca.2016.09.008.

Appendix 1. Members of guidelines’ panels

Primary Panel Members
Co-chairs: Drs P.J. Devereaux, Joel Parlow
Members: Drs Amal Bessissow, Gregory Bryson, Emmanuelle Duceppe, Michelle Graham, Kristin Lyon, Paul MacDonald, Michael McMullen, Daniel I. Sessler, Sadeesh Srinathan, Kim Styles, Vikas Tandon

Secondary Panel Members
Drs Rebecca Auer, Mohit Bhandari, Davy Cheng, Peter Choi, Benjamin Chow, Gilles Dagenais, Josee Fafard, Gordon Guyatt, John Harlock, David Hornstein, Michael Jacka, Andrea Kurz, Luc Lamhier, Yannick LeManach, Finlay McAlister, Edward McFalls, Michael McGillivary, Marko Mrkobrada, Ameen Patel, Tej Sheth, Maria Tiboni, Duminda Wijeyesundera